Creating a Simple Paint Program[footnoteRef:1] [1: Original version by Ryan McFall. Updated by Charles Cusack, July 2014.]

We want to be able to allow the user to interact with our programs a little bit. We will focus on using the mouse and keyboard for this lab.
We will rarely, if ever, do cin style input to our graphics programs. Instead, each time a key is pressed, an event is generated, which our program must then handle. Handling an event is made simple by the C# concept of events and Visual Studio's built-in way to add handlers for the events.
Open your CSCI342 solution in Visual Studio, and create a new Windows Form project named SimplePaintLab. Make sure that
1. Your form contains an instance of the SimpleOpenGLControl
2. The control's Dock property is set to fill
3. You call the control's InitializeContexts method at the end of the form constructor
4. You add event handlers for both the Resize and Paint events and add the “stock” code to them.
Our next task is to set up an event handler so that our program can handle keyboard events. We'll start by indicating to the .NET environment that we want to handle keyboard events that occur in control. There are three different keyboard events that we can register interest in: KeyDown, KeyUp and KeyPress. At this point, we'll go with KeyPress. For our first action, let's make it so that pressing the 'q' key causes the program to end.
1. Go to the Design view of your Form1.
2. Ensure that the SimpleOpenGLControl component is selected
3. Go to the Event view of the Properties window (click the lightning bolt).
4. Double-click on the textfield to the right of the KeyPress label (or double-click the label itself) to register an event handler. This will generate a method named Form1_KeyPress and register the handler with the control automatically. The signature of the function will be as follows:
 private void Form1_KeyPress (object sender, KeyPressEventArgs e)
5. The KeyChar property of the KeyPressEventArgs parameter contains a character representation of the key that was pressed. In a C# program you tell the program to end by calling Application.Exit(). Using this information, implement the Form1_KeyPress method so it closes when ‘q’ is clicked.
6. Test your program to be sure that it works correctly at this point.
We will now extend our basic program so it functions as a very primitive paint program. The only type of graphics primitive that our paint program will be able to handle will be lines. The first time the left mouse button is clicked, we will start a new line; the second left click will complete that line.
1. Set up the paint handler so that it includes an appropriate calls to glClear and method setWindow (you added this method to your Utilities class as part of mygraphicslib).
2. Add an event handler that can handle MouseClicks that occur in our OpenGL control. Do this in the same way that you added a handler for KeyPress events.
3. To make sure this is working properly, we will first have the application print a message to the console when the mouse event occurs; include the (x, y) coordinates of the mouse click in the message. To do so, add the following to the MouseClick handler:
 Console.WriteLine("Coordinates are ({0},{1})", e.Location.X,
 simpleOpenGlControl1.Height - e.Location.Y);
Notice that we adjusted the y-coordinate to accommodate the top-to-bottom nature of screen coordinates. (In other words, the mouse coordinates are essentially upside-down from what we want in OpenGL.)

Now let's actually draw some lines. We can now make use of the classes we added to the mygraphicslib project.
1. To facilitate using those classes, we need to add a reference to the mygraphicslib project.
Right-click and choose Add Reference ..., select the Projects tab, and then choose the mygraphicslib project.
2. In our Form class, we will want to maintain a PolylineCollection object within our form, so create a member variable and initialize it in the class constructor. You'll need to add an appropriate using statement to the code to make this work.

The MouseEventArgs object passed to your mouse handler gives you access to data about the mouse click. Here is what we will do with that data:
· On the first mouse click, start a new polyline object in the collection, and add the point to that polyline.
· On the second mouse click, the point is simply added to the current line.

You'll need a variable that keeps track of which mouse click you are currently on. In either case, we will ask the OpenGL control to refresh after a mouse click so that we can see what our current drawing looks like. We also need to modify the paint method so that it draws the lines we have created. We've already written a method in our PolylineCollection to take care of this for us; all we need to do is call it from within our paint handler.
1. Based on the discussion above, finish implementing the draw program so it draws lines as specified about. Don’t forget about “flipping” the y-coordinates!
2. Run your program to verify that it is working as expected.
3. [bookmark: _GoBack]Enable anti-aliasing to make your lines look better by calling the following
 DrawingTools.enableDefaultAntiAliasing()
(This class/method is from the mygraphicslib project).

Now we want to make it so that our points can have more than 2 points in them. Our data structure is actually already set up to allow this; we simply need to modify the behavior of our event handlers to make it happen.
Our new method of operation should be that the last point of a given line is set when the right mouse button is clicked - all left clicks should add points to the current line. A left click after a right click should start a new line in the polyline collection.

1. Update and test your implementation based on the preceding discussion.
Creating a simple paint program		2

